Reducing the Number of Non-linear Multiplications in Masking Schemes

Srinivas Vivek

University of Bristol, UK

Jürgen Pulkus Giesecke & Devrient, Munich, Germany

> August 19th, 2016 CHES 2016

Srinivas Vivek Reducing the Number of NLMs in Masking Schemes

Outline

Motivation

Our Contribution

Improved CRV Method Further Improvement Using Bigger Fields Non-Linear Complexity: Generalised Lower Bounds

Conclusion

Motivation

Srinivas Vivek Reducing the Number of NLMs in Masking Schemes

Masking

Masking is a popular countermeasure against *DPA-like* side-channel attacks.

Well suited to protect block cipher implementations.

In (additive) masking, each sensitive variable is secret shared.

• Let $x \in \mathbb{F}_{2^n}$, then $x = x_0 + x_1 + \ldots + x_v$.

Security offered has been relatively well analysed

- w.r.t. probing leakage model [ISW03] and noisy leakage model [CJJR99, RP13].
- Loosely speaking, SCA complexity is exponential w.r.t. v.

[/SW03] Y. Ishai, A. Sahai, D. Wagner. Private circuits: Securing hardware against probing attacks. CRYPTO 2003. [CJ/RA99] S. Chari, C.S. Jutla, J.R. Rao, P. Rohatgi. Towards sound approaches to counteract power-analysis attacks. CRYPTO 1999. [RP10] M. Rivain, E. Prouff. Provably secure higher-order masking of AES. CHES 2010.

Srinivas Vivek Reducing the Number of NLMs in Masking Schemes

Masking

Masking is a popular countermeasure against *DPA-like* side-channel attacks.

Well suited to protect block cipher implementations.

In (additive) masking, each sensitive variable is secret shared.

• Let $x \in \mathbb{F}_{2^n}$, then $x = x_0 + x_1 + \ldots + x_v$.

Security offered has been relatively well analysed

- w.r.t. probing leakage model [ISW03] and noisy leakage model [CJJR99, RP13].
- Loosely speaking, SCA complexity is exponential w.r.t. v.

 [ISW03] Y. Ishai, A. Sahai, D. Wagner. Private circuits: Securing hardware against probing attacks. CRYPTO 2003.
[CJRR99] S. Chari, C.S. Jutla, J.R. Rao, P. Rohatgi. Towards sound approaches to counteract power-analysis attacks. CRYPTO 1999.
[RP10] M. Rivain, E. Prouff. Provably secure higher-order masking of AES. CHES 2010.

Higher-Order Masking

Linear/Affine functions are straightforward to compute in presence of shares.

Time and randomness complexity are both linear in the number of shares.

Main challenge is to securely compute *non-linear* functions.

- Various H-O masking schemes differ mainly in how these functions are evaluated.
- ► For block ciphers, this reduces to securing their S-boxes.

Higher-Order Masking

Linear/Affine functions are straightforward to compute in presence of shares.

Time and randomness complexity are both linear in the number of shares.

Main challenge is to securely compute *non-linear* functions.

- Various H-O masking schemes differ mainly in how these functions are evaluated.
- ► For block ciphers, this reduces to securing their S-boxes.

Proposed in [CGPQR12].

- Based on [ISW03, RP10].
- Guarantees *t*-th order security in the probing leakage model when $v \ge 2t$.
- Suited well for software implementations.

A *d*-to-*r*-bit S-box S ($d \ge r$) is represented by a polynomial $\mathcal{P}(x) \in \mathbb{F}_{2^d}[x]$.

Securely evaluating S reduces to evaluating P(x) when x is given as a secret-shared input.

Proposed in [CGPQR12].

- Based on [ISW03, RP10].
- Guarantees *t*-th order security in the probing leakage model when $v \ge 2t$.
- Suited well for software implementations.

A *d*-to-*r*-bit S-box S ($d \ge r$) is represented by a polynomial $\mathcal{P}(x) \in \mathbb{F}_{2^d}[x]$.

Securely evaluating S reduces to evaluating P(x) when x is given as a secret-shared input.

Note that (polynomial) addition, multiplication by a scalar, (polynomial) squaring operations are \mathbb{F}_2 -linear.

• Cheap: $\mathcal{O}(v)$ time and randomness.

Cost mainly determined by the Non-Linear Multiplications (NLMs).

- ▶ That are secured using a technique from [*ISW03*, *RP10*].
- Expensive: $\mathcal{O}(v^2)$ time and randomness.

Already there are several works improving the CGPQR scheme: [*RV13, CRV14, CGPZ16 (next talk)*] and [*GPS14, CPRR15*].

[RV13] A.Roy, S. Vivek. Analysis and improvement of the generic higher-order masking scheme of FSE 2012. CHES 2013. [CRV14] J.-S. Coron, A. Roy, and S. Vivek. Fast evaluation of polynomials over binary finite fields and application to side-channel countermeasures. CHES 2014 & JCEN 2015.

[GPS14] V. Grosso, E. Prouff, F.-X. Standaert. Efficient masked S-boxes processing - A step forward. AFRICACRYPT 2014. [CPRR15] C. Carlet, E. Prouff, M. Rivain, T. Roche. Algebraic decomposition for probing security. CRYPTO 2015.

Note that (polynomial) addition, multiplication by a scalar, (polynomial) squaring operations are \mathbb{F}_2 -linear.

• Cheap: $\mathcal{O}(v)$ time and randomness.

Cost mainly determined by the Non-Linear Multiplications (NLMs).

- ► That are secured using a technique from [*ISW03, RP10*].
- Expensive: $\mathcal{O}(v^2)$ time and randomness.

Already there are several works improving the CGPQR scheme: [*RV13, CRV14, CGPZ16 (next talk)*] and [*GPS14, CPRR15*].

[RV13] A.Roy, S. Vivek. Analysis and improvement of the generic higher-order masking scheme of FSE 2012. CHES 2013. [CRV14] J.-S. Coron, A. Roy, and S. Vivek. Fast evaluation of polynomials over binary finite fields and application to side-channel countermeasures. CHES 2014 & JCEN 2015.

[GPS14] V. Grosso, E. Prouff, F.-X. Standaert. Efficient masked S-boxes processing - A step forward. AFRICACRYPT 2014. [CPRR15] C. Carlet, E. Prouff, M. Rivain, T. Roche. Algebraic decomposition for probing security. CRYPTO 2015.

Note that (polynomial) addition, multiplication by a scalar, (polynomial) squaring operations are \mathbb{F}_2 -linear.

• Cheap: $\mathcal{O}(v)$ time and randomness.

Cost mainly determined by the Non-Linear Multiplications (NLMs).

- ► That are secured using a technique from [*ISW03*, *RP10*].
- Expensive: $\mathcal{O}(v^2)$ time and randomness.

Already there are several works improving the CGPQR scheme: [*RV13, CRV14, CGPZ16 (next talk)*] and [*GPS14, CPRR15*].

[RV13] A.Roy, S. Vivek. Analysis and improvement of the generic higher-order masking scheme of FSE 2012. CHES 2013. [CRV14] J.-S. Coron, A. Roy, and S. Vivek. Fast evaluation of polynomials over binary finite fields and application to side-channel countermeasures. CHES 2014 & JCEN 2015.

[GPS14] V. Grosso, E. Prouff, F.-X. Standaert. Efficient masked S-boxes processing - A step forward. AFRICACRYPT 2014. [CPRR15] C. Carlet, E. Prouff, M. Rivain, T. Roche. Algebraic decomposition for probing security. CRYPTO 2015.

Evaluating Polynomials over \mathbb{F}_{2^d}

Cost analysis of the CGPQR scheme reduces to the following problem.

- ► To evaluate any polynomial $P(x) \in \mathbb{F}_{2^d}[x]$, given x.
- **Count**: non-linear (polynomial) multiplications.
- Ignore: (polynomial) addition, scalar multiplication, (polynomial) squaring operations
 - ► Equivalent to ignoring the cost of 𝔽₂-affine functions over 𝔽_{2^d}.

Polynomial evaluation methods.

- Knuth-Eve / Parity-Split Method [K62, E64, CGPQR12].
 - (Proven) worst-case complexity: $1.5 \cdot \sqrt{2^d}$ NLMs.
- ► CRV Method [CRV14].
 - (Heuristic) worst-case complexity: $\approx 2 \cdot \sqrt{\frac{2^d}{d}}$ NLMs.

• Lower bound:
$$\approx \sqrt{rac{2^d}{d}}$$
 NLMs.

[*K62*] D.E. Knuth. *Evaluation of polynomials by computer*. CACM 1962. [*E64*] J. Eve. *The Evaluation of Polynomials*. Numerische Mathematik 1964.

Evaluating Polynomials over \mathbb{F}_{2^d}

Cost analysis of the CGPQR scheme reduces to the following problem.

- ► To evaluate any polynomial $P(x) \in \mathbb{F}_{2^d}[x]$, given x.
- **Count**: non-linear (polynomial) multiplications.
- Ignore: (polynomial) addition, scalar multiplication, (polynomial) squaring operations
 - ► Equivalent to ignoring the cost of 𝔽₂-affine functions over 𝔽_{2^d}.

Polynomial evaluation methods.

- Knuth-Eve / Parity-Split Method [K62, E64, CGPQR12].
 - (Proven) worst-case complexity: $1.5 \cdot \sqrt{2^d}$ NLMs.
- CRV Method [CRV14].
 - (Heuristic) worst-case complexity: $\approx 2 \cdot \sqrt{\frac{2^d}{d}}$ NLMs.

• Lower bound:
$$\approx \sqrt{\frac{2^d}{d}}$$
 NLMs.

[*K62*] D.E. Knuth. *Evaluation of polynomials by computer*. CACM 1962. [*E64*] J. Eve. *The Evaluation of Polynomials*. Numerische Mathematik 1964.

Non-linear Complexity of S-boxes: State-of-the-Art

(d, r)	(4,4)	(5,5)	(6,4)	(6,6)	(7,7)	(8,8)
Cyclotomic-Class method	3	5	11	11	17	33
Parity-Split method	4	6	10	10	14	22
[CGPQR12]						
CRV method [CRV14]	2	4	4	5	7	10
<i>Lower bounds</i> (over \mathbb{F}_{2^d})	2	2	3	3	3	3
[<i>R</i> V <i>13</i> , This Work]						

Table: Worst-case complexity in terms of NLMs of *previous* methods.

Our Contribution

Srinivas Vivek Reducing the Number of NLMs in Masking Schemes

Improved CRV Method

Srinivas Vivek Reducing the Number of NLMs in Masking Schemes

Input: *d*-to-*r*-bit S-box S

Output: A sequence of polynomials that eventually evaluates *S*.

Step 0: Naturally encode $\{0,1\}^d$ and $\{0,1\}^r$ in \mathbb{F}_{2^d} .

Step 1: Pre-compute a set of monomials $x^{L} = \{x^{i} | i \in L\}$

- Closed w.r.t. squaring.
- ► $x^L \cdot x^L$ must include all monomials in $\mathbb{F}_{2^d}[x]/(x^{2^d} x)$.

Input: *d*-to-*r*-bit S-box S

Output: A sequence of polynomials that eventually evaluates *S*.

Step 0: Naturally encode $\{0,1\}^d$ and $\{0,1\}^r$ in \mathbb{F}_{2^d} .

Step 1: Pre-compute a set of monomials $x^{L} = \{x^{i} | i \in L\}$

- Closed w.r.t. squaring.
- ► $x^L \cdot x^L$ must include all monomials in $\mathbb{F}_{2^d}[x]/(x^{2^d} x)$.

Input: *d*-to-*r*-bit S-box S

Output: A sequence of polynomials that eventually evaluates *S*.

Step 0: Naturally encode $\{0, 1\}^d$ and $\{0, 1\}^r$ in \mathbb{F}_{2^d} .

Step 1: Pre-compute a set of monomials $x^{L} = \{x^{i} | i \in L\}$

- Closed w.r.t. squaring.
- $x^{L} \cdot x^{L}$ must include all monomials in $\mathbb{F}_{2^{d}}[x]/(x^{2^{d}}-x)$.

Step 2: Find decomposition of the form

$$P_{S}(x) = \sum_{i=1}^{t-1} p_{i}(x) \cdot q_{i}(x) + p_{t}(x) \pmod{X^{2^{d}} - X},$$

where $p_i(x), q_i(x) \in \mathcal{T}(x^L)$. By

- Choosing random polynomials $q_i(x) \stackrel{\$}{\leftarrow} \mathcal{T}(x^L)$.
- Set up an \mathbb{F}_2 -linear system of equations
 - By evaluating the above relation at each input.
 - Obtaining one equation for each output bit of S.
 - Note that d r output bits of $P_S(x)$ are discarded.
- Solve for the unknown bits of the coefficients of $p_i(x)$.

Very similar to the CRV method.

Mainly Step 0 and Step 1 are modified.

Step 0: Naturally encode $\{0,1\}^d$ and $\{0,1\}^r$ in \mathbb{F}_{2^n} .

▶ Need $d, r \leq n$.

Step 1: Pre-compute a set of monomials $x^{L} = \{x^{i} | i \in L\}$

- *Closed* w.r.t. squaring.
- ► Heuristic: x^L · x^L must yield a decomposition in the Step 2 below.
 - This condition leads to a lower bound on |L|.

Step 2: Same as in the CRV method but now working over \mathbb{F}_{2^n} .

Very similar to the CRV method.

Mainly Step 0 and Step 1 are modified.

Step 0: Naturally encode $\{0, 1\}^d$ and $\{0, 1\}^r$ in \mathbb{F}_{2^n} .

► Need *d*, *r* ≤ *n*.

Step 1: Pre-compute a set of monomials $x^{L} = \{x^{i} | i \in L\}$

- *Closed* w.r.t. squaring.
- Heuristic: x^L · x^L must yield a decomposition in the Step 2 below.
 - This condition leads to a lower bound on |L|.

Step 2: Same as in the CRV method but now working over \mathbb{F}_{2^n} .

Very similar to the CRV method.

Mainly Step 0 and Step 1 are modified.

Step 0: Naturally encode $\{0, 1\}^d$ and $\{0, 1\}^r$ in \mathbb{F}_{2^n} .

► Need *d*, *r* ≤ *n*.

Step 1: Pre-compute a set of monomials $x^{L} = \{x^{i} | i \in L\}$

- Closed w.r.t. squaring.
- Heuristic: x^L · x^L must yield a decomposition in the Step 2 below.
 - This condition leads to a lower bound on |L|.

Step 2: Same as in the CRV method but now working over \mathbb{F}_{2^n} .

Very similar to the CRV method.

Mainly Step 0 and Step 1 are modified.

Step 0: Naturally encode $\{0, 1\}^d$ and $\{0, 1\}^r$ in \mathbb{F}_{2^n} .

▶ Need *d*, *r* ≤ *n*.

Step 1: Pre-compute a set of monomials $x^{L} = \{x^{i} | i \in L\}$

- Closed w.r.t. squaring.
- Heuristic: x^L · x^L must yield a decomposition in the Step 2 below.
 - This condition leads to a lower bound on |L|.

Step 2: Same as in the CRV method but now working over \mathbb{F}_{2^n} .

Our Method: Analysis

Total number of NLMs $M_{d,r,n} \approx |L|/n + t - 1$.

Bigger field means longer cyclotomic classes.

As in the CRV method, to choose parameters L and t, we use

• *Heuristic*: we get full ranked matrix in Step 2 if $|L| \cdot t \cdot n \ge r \cdot 2^d$.

We heuristically show that

$$M_{d,r,n} \approx \sqrt{\frac{2^d}{d}} + \frac{r \cdot \sqrt{d \cdot 2^d}}{n^2}.$$

Hence
$$M_{d,r,\infty} \approx \sqrt{\frac{2^d}{d}}$$
.

• Note: CRV method needs $\approx 2 \cdot \sqrt{\frac{2^d}{d}}$ NLMs.

Our Method: Analysis

Total number of NLMs $M_{d,r,n} \approx |L|/n + t - 1$.

Bigger field means longer cyclotomic classes.

As in the CRV method, to choose parameters L and t, we use

• *Heuristic*: we get full ranked matrix in Step 2 if $|L| \cdot t \cdot n \ge r \cdot 2^d$.

We heuristically show that

$$M_{d,r,n} \approx \sqrt{\frac{2^d}{d}} + \frac{r \cdot \sqrt{d \cdot 2^d}}{n^2}.$$

Hence
$$M_{d,r,\infty} \approx \sqrt{\frac{2^d}{d}}$$
.

▶ Note: CRV method needs $\approx 2 \cdot \sqrt{\frac{2^d}{d}}$ NLMs.

Our Method: Analysis

Total number of NLMs $M_{d,r,n} \approx |L|/n + t - 1$.

Bigger field means longer cyclotomic classes.

As in the CRV method, to choose parameters L and t, we use

• *Heuristic*: we get full ranked matrix in Step 2 if $|L| \cdot t \cdot n \ge r \cdot 2^d$.

We heuristically show that

$$M_{d,r,n} \approx \sqrt{rac{2^d}{d}} + rac{r \cdot \sqrt{d \cdot 2^d}}{n^2}.$$

Hence $M_{d,r,\infty} \approx \sqrt{\frac{2^d}{d}}$.

• Note: CRV method needs $\approx 2 \cdot \sqrt{\frac{2^d}{d}}$ NLMs.

Non-linear Complexity of S-boxes: Comparison

(d, r)	(4,4)	(5,5)	(6,4)	(6,6)	(7,7)	(8,8)
Cyclotomic-Class method	3	5	11	11	17	33
[CGPQR12]						
Parity-Split method	4	6	10	10	14	22
[CGPQR12]						
CRV method [CRV14]	2	4	4	5	7	10
Our method (over \mathbb{F}_{2^8})	2	3	3	4	6	10
Our method (over $\mathbb{F}_{2^{16}}$)	2	3	3	3	4	6
Lower bounds (over \mathbb{F}_{2^n})	2	2	3	3	3	3
[<i>R</i> V <i>13</i> , This Work]						

Table: Comparison of worst-case complexity in terms of NLMs.

Srinivas Vivek Reducing the Number of NLMs in Masking Schemes

DES uses eight 6-to-4-bit S-boxes.

Pre-compute $x^{L} = x^{C_{0}^{8}} \cup x^{C_{1}^{8}} \cup x^{C_{3}^{8}} \cup x^{C_{7}^{8}} \in \mathbb{F}_{2^{8}}[x]/(x^{2^{8}}-x).$

Obtain the decomposition: $P(x) = p_1(x) \cdot q_1(x) + p_2 \pmod{X^{2^8} - X}$ ▶ $p_1(x), q_1(x), p_2(x) \in \mathcal{T}(x^L).$

- Used code from https://github.com/coron/htable/.
- Ran experiments on a DELL Laptop but manipulated only bytes.
- Tabulated linear functions in ROM for efficiency.

DES uses eight 6-to-4-bit S-boxes.

Pre-compute
$$x^{L} = x^{C_{0}^{8}} \cup x^{C_{1}^{8}} \cup x^{C_{3}^{8}} \cup x^{C_{7}^{8}} \in \mathbb{F}_{2^{8}}[x]/(x^{2^{8}} - x).$$

Obtain the decomposition: $P(x) = p_1(x) \cdot q_1(x) + p_2 \pmod{X^{2^8} - X}$ ► $p_1(x), q_1(x), p_2(x) \in \mathcal{T}(x^L).$

- Used code from https://github.com/coron/htable/.
- Ran experiments on a DELL Laptop but manipulated only bytes.
- Tabulated linear functions in ROM for efficiency.

DES uses eight 6-to-4-bit S-boxes.

Pre-compute
$$x^{L} = x^{C_{0}^{8}} \cup x^{C_{1}^{8}} \cup x^{C_{3}^{8}} \cup x^{C_{7}^{8}} \in \mathbb{F}_{2^{8}}[x]/(x^{2^{8}} - x).$$

Obtain the decomposition: $P(x) = p_1(x) \cdot q_1(x) + p_2 \pmod{X^{2^8} - X}$ $\triangleright p_1(x), q_1(x), p_2(x) \in \mathcal{T}(x^L).$

- Used code from https://github.com/coron/htable/.
- Ran experiments on a DELL Laptop but manipulated only bytes.
- Tabulated linear functions in ROM for efficiency.

DES uses eight 6-to-4-bit S-boxes.

Pre-compute
$$x^{L} = x^{C_{0}^{8}} \cup x^{C_{1}^{8}} \cup x^{C_{3}^{8}} \cup x^{C_{7}^{8}} \in \mathbb{F}_{2^{8}}[x]/(x^{2^{8}}-x).$$

Obtain the decomposition: $P(x) = p_1(x) \cdot q_1(x) + p_2 \pmod{X^{2^8} - X}$ $p_1(x), q_1(x), p_2(x) \in \mathcal{T}(x^L).$

- Used code from https://github.com/coron/htable/.
- Ran experiments on a DELL Laptop but manipulated only bytes.
- Tabulated linear functions in ROM for efficiency.

Masked Implementation of DES: Comparison

Method	t	<i>v</i> + 1	Rand $\times 10^3$	RAM (bytes)	Time (ms)	OF
Unprotected					0.005	1
CGPQR+RV	1	3	2752	72	0.290	58
CGPQR+CRV	1	3	1600	40	0.093	18
CGPQR+This Work	1	3	1216	34	0.068	13
CGPQR+RV	2	5	9152	118	0.538	107
CGPQR+CRV	2	5	5312	64	0.175	35
CGPQR+This Work	2	5	4032	54	0.133	26
CGPQR+RV	3	7	19200	164	0.824	164
CGPQR+CRV	3	7	11136	88	0.293	58
CGPQR+This Work	3	7	8448	74	0.214	42
CGPQR+RV	4	9	32896	210	1.188	237
CGPQR+CRV	4	9	19072	112	0.455	91
CGPQR+This Work	4	9	14464	94	0.323	64

Further Improvement Using Bigger Fields

Srinivas Vivek Reducing the Number of NLMs in Masking Schemes

Improved Upper Bounds

Worst-case upper bound on the non-linear complexity of d-to-r-bit S-boxes.

- ► Even after our improvement to the CRV method, the upper bound is still $O\left(\sqrt{\frac{2^d}{d}}\right)$ NLMs.
- ► Using a different technique, we "improve" the upper bound to [log₂d] NLMs. This bound is optimal.

Main idea is

- We can pack several independent multiplications over a smaller field in a multiplication over a suitable extension field.
- Then individual products can be "extracted" for free using linear projections.

We argument based on algebraic degrees to prove optimality of U.B.

Improved Upper Bounds

Worst-case upper bound on the non-linear complexity of d-to-r-bit S-boxes.

- ► Even after our improvement to the CRV method, the upper bound is still $O\left(\sqrt{\frac{2^d}{d}}\right)$ NLMs.
- ► Using a different technique, we "improve" the upper bound to [log₂d] NLMs. This bound is optimal.

Main idea is

- We can pack several independent multiplications over a smaller field in a multiplication over a suitable extension field.
- Then individual products can be "extracted" for free using linear projections.

We argument based on algebraic degrees to prove optimality of U.B.

Improved Upper Bounds: AES case

Applying the preceding technique to the case of AES S-box

- ▶ We can evaluate $(x^{254} \in \mathbb{F}_{2^8}[x])$ using only 3 NLMs over $\mathbb{F}_{2^{16}}[x]$.
- Previously it needed 4 NLMs over $\mathbb{F}_{2^8}[x]$.

Method

- Identify \mathbb{F}_{2^8} with a subfield of $\mathbb{F}_{2^{16}}$.
- Compute x^3 .
- Compute $(x^2 + z \cdot x^3) \cdot (x^3)^4$, where $z \in \mathbb{F}_{2^{16}} \setminus \mathbb{F}_{2^8}$.
- \mathbb{F}_2 -linearly extract the functions $X \mapsto X^{14}$ and $X \mapsto X^{15}$ over \mathbb{F}_{2^8} .
- Finally, compute $x^{254} = x^{14} \cdot (x^{15})^{16}$.
- The above sequence of operations is motivated by [GHS12].

[GHS12] C. Gentry, S. Halevi, N.P. Smart. Homomorphic evaluation of the AES circuit. CRYPTO 2012 & ePrint 2012/99.

Improved Upper Bounds: AES case

Applying the preceding technique to the case of AES S-box

- ▶ We can evaluate $(x^{254} \in \mathbb{F}_{2^8}[x])$ using only 3 NLMs over $\mathbb{F}_{2^{16}}[x]$.
- Previously it needed 4 NLMs over $\mathbb{F}_{2^8}[x]$.

Method

- Identify \mathbb{F}_{2^8} with a subfield of $\mathbb{F}_{2^{16}}$.
- Compute x³.
- Compute $(x^2 + z \cdot x^3) \cdot (x^3)^4$, where $z \in \mathbb{F}_{2^{16}} \setminus \mathbb{F}_{2^8}$.
- \mathbb{F}_2 -linearly extract the functions $X \mapsto X^{14}$ and $X \mapsto X^{15}$ over \mathbb{F}_{2^8} .
- Finally, compute $x^{254} = x^{14} \cdot (x^{15})^{16}$.
- The above sequence of operations is motivated by [GHS12].

[GHS12] C. Gentry, S. Halevi, N.P. Smart. Homomorphic evaluation of the AES circuit. CRYPTO 2012 & ePrint 2012/99.

Non-Linear Complexity: Generalised Lower Bounds

Srinivas Vivek Reducing the Number of NLMs in Masking Schemes

Generalised Lower Bounds

Worst-case lower bound on the non-linear complexity of d-to-r-bit S-boxes.

- Previous best bound [*CR*V14]: $\sqrt{\frac{2^d}{d}} 2$ NLMs.
 - But this bound holds only for d = r and over \mathbb{F}_{2^d} .

We generalise the [*CRV14*] bound to any chosen field \mathbb{F}_{2^n} .

- New lower bound: $\frac{\sqrt{r(2^d-1-d)+(d+\frac{r-n}{2})^2}-(d+\frac{r-n}{2})}{n}$ NLMs.
 - ▶ As in [*CRV14*], we use counting-based arguments.
 - Additionally, we use the fact that projections are linear functions.

Generalised Lower Bounds

Worst-case lower bound on the non-linear complexity of d-to-r-bit S-boxes.

- Previous best bound [*CRV14*]: $\sqrt{\frac{2^d}{d}}$ 2 NLMs.
 - But this bound holds only for d = r and over \mathbb{F}_{2^d} .

We generalise the [CRV 14] bound to any chosen field \mathbb{F}_{2^n} .

- New lower bound: $\frac{\sqrt{r(2^d-1-d)+(d+\frac{r-n}{2})^2}-(d+\frac{r-n}{2})}{n}$ NLMs.
 - ► As in [CRV14], we use counting-based arguments.
 - Additionally, we use the fact that projections are linear functions.

Conclusion

Srinivas Vivek Reducing the Number of NLMs in Masking Schemes

Conclusion

We *improve* the [CRV14] method for evaluating S-box polynomials.

- Main idea is to work over fields **bigger** than \mathbb{F}_{2^d} for a *d*-to-*r*-bit S-box.
- Reduced the non-linear complexity for many S-boxes.
 - ► DES S-boxes now need only 3 NLMs over F_{2⁸}.
 - Improvement in the running time of masked DES by around 25%.

"Improved" **upper** bound on the complexity of *d*-to-*r*-bit S-boxes

- ▶ New: $\lceil log_2 d \rceil$ NLMs. Previous: $O\left(\sqrt{\frac{2d}{d}}\right)$ NLMs.
- Comes at the cost of working in arbitrarily large fields.
- ▶ AES S-boxes now need only 3 NLMs over 𝔽_{2¹⁶}.

Generalised previous lower bound results to arbitrary binary finite fields.

Conclusion

We *improve* the [CRV14] method for evaluating S-box polynomials.

- Main idea is to work over fields **bigger** than \mathbb{F}_{2^d} for a *d*-to-*r*-bit S-box.
- Reduced the non-linear complexity for many S-boxes.
 - ► DES S-boxes now need only 3 NLMs over F_{2⁸}.
 - Improvement in the running time of masked DES by around 25%.

"Improved" **upper** bound on the complexity of *d*-to-*r*-bit S-boxes

- ► New: $\lceil log_2 d \rceil$ NLMs. Previous: $\mathcal{O}\left(\sqrt{\frac{2^d}{d}}\right)$ NLMs.
- Comes at the cost of working in arbitrarily large fields.
- ▶ AES S-boxes now need only 3 NLMs over 𝔽_{2¹⁶}.

Generalised previous lower bound results to arbitrary binary finite fields.

Any Questions?

Srinivas Vivek Reducing the Number of NLMs in Masking Schemes

