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Masking

Masking is a popular countermeasure against DPA-like
side-channel attacks.

Well suited to protect block cipher implementations.

In (additive) masking, each sensitive variable is secret shared.
I Let x ∈ F2n , then x = x0 + x1 + . . .+ xv .

Security offered has been relatively well analysed
I w.r.t. probing leakage model [ISW03] and noisy leakage model

[CJJR99, RP13].
I Loosely speaking, SCA complexity is exponential w.r.t. v .

[ISW03] Y. Ishai, A. Sahai, D. Wagner. Private circuits: Securing hardware against probing attacks. CRYPTO 2003.
[CJRR99] S. Chari, C.S. Jutla, J.R. Rao, P. Rohatgi. Towards sound approaches to counteract power-analysis attacks.
CRYPTO 1999.
[RP10] M. Rivain, E. Prouff. Provably secure higher-order masking of AES. CHES 2010.
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Higher-Order Masking

Linear/Affine functions are straightforward to compute in presence
of shares.

I Time and randomness complexity are both linear in the number
of shares.

Main challenge is to securely compute non-linear functions.
I Various H-O masking schemes differ mainly in how these

functions are evaluated.
I For block ciphers, this reduces to securing their S-boxes.
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CGPQR H-O Masking Scheme

Proposed in [CGPQR12].
I Based on [ISW03, RP10].
I Guarantees t-th order security in the probing leakage model

when v ≥ 2t .
I Suited well for software implementations.

A d-to-r -bit S-box S (d ≥ r) is represented by a polynomial
P(x) ∈ F2d [x ].

I Securely evaluating S reduces to evaluating P(x) when x is
given as a secret-shared input.
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CGPQR H-O Masking Scheme

Note that (polynomial) addition, multiplication by a scalar,
(polynomial) squaring operations are F2-linear.

I Cheap: O(v) time and randomness.

Cost mainly determined by the Non-Linear Multiplications (NLMs).
I That are secured using a technique from [ISW03, RP10].
I Expensive: O(v2) time and randomness.

Already there are several works improving the CGPQR scheme:
[RV13, CRV14, CGPZ16 (next talk)] and [GPS14, CPRR15].
[RV13] A.Roy, S. Vivek. Analysis and improvement of the generic higher-order masking scheme of FSE 2012. CHES 2013.
[CRV14] J.-S. Coron, A. Roy, and S. Vivek. Fast evaluation of polynomials over binary finite fields and application to
side-channel countermeasures. CHES 2014 & JCEN 2015.
[GPS14] V. Grosso, E. Prouff, F.-X. Standaert. Efficient masked S-boxes processing - A step forward. AFRICACRYPT 2014.
[CPRR15] C. Carlet, E. Prouff, M. Rivain, T. Roche. Algebraic decomposition for probing security. CRYPTO 2015.

Srinivas Vivek
Reducing the Number of NLMs in Masking Schemes Slide 7



CGPQR H-O Masking Scheme

Note that (polynomial) addition, multiplication by a scalar,
(polynomial) squaring operations are F2-linear.

I Cheap: O(v) time and randomness.

Cost mainly determined by the Non-Linear Multiplications (NLMs).
I That are secured using a technique from [ISW03, RP10].
I Expensive: O(v2) time and randomness.

Already there are several works improving the CGPQR scheme:
[RV13, CRV14, CGPZ16 (next talk)] and [GPS14, CPRR15].
[RV13] A.Roy, S. Vivek. Analysis and improvement of the generic higher-order masking scheme of FSE 2012. CHES 2013.
[CRV14] J.-S. Coron, A. Roy, and S. Vivek. Fast evaluation of polynomials over binary finite fields and application to
side-channel countermeasures. CHES 2014 & JCEN 2015.
[GPS14] V. Grosso, E. Prouff, F.-X. Standaert. Efficient masked S-boxes processing - A step forward. AFRICACRYPT 2014.
[CPRR15] C. Carlet, E. Prouff, M. Rivain, T. Roche. Algebraic decomposition for probing security. CRYPTO 2015.

Srinivas Vivek
Reducing the Number of NLMs in Masking Schemes Slide 7



CGPQR H-O Masking Scheme

Note that (polynomial) addition, multiplication by a scalar,
(polynomial) squaring operations are F2-linear.

I Cheap: O(v) time and randomness.

Cost mainly determined by the Non-Linear Multiplications (NLMs).
I That are secured using a technique from [ISW03, RP10].
I Expensive: O(v2) time and randomness.

Already there are several works improving the CGPQR scheme:
[RV13, CRV14, CGPZ16 (next talk)] and [GPS14, CPRR15].
[RV13] A.Roy, S. Vivek. Analysis and improvement of the generic higher-order masking scheme of FSE 2012. CHES 2013.
[CRV14] J.-S. Coron, A. Roy, and S. Vivek. Fast evaluation of polynomials over binary finite fields and application to
side-channel countermeasures. CHES 2014 & JCEN 2015.
[GPS14] V. Grosso, E. Prouff, F.-X. Standaert. Efficient masked S-boxes processing - A step forward. AFRICACRYPT 2014.
[CPRR15] C. Carlet, E. Prouff, M. Rivain, T. Roche. Algebraic decomposition for probing security. CRYPTO 2015.

Srinivas Vivek
Reducing the Number of NLMs in Masking Schemes Slide 7



Evaluating Polynomials over F2d

Cost analysis of the CGPQR scheme reduces to the following
problem.

I To evaluate any polynomial P(x) ∈ F2d [x ], given x .
I Count: non-linear (polynomial) multiplications.
I Ignore: (polynomial) addition, scalar multiplication, (polynomial)

squaring operations
I Equivalent to ignoring the cost of F2-affine functions over F2d .

Polynomial evaluation methods.
I Knuth-Eve / Parity-Split Method [K62, E64, CGPQR12].

I (Proven) worst-case complexity: 1.5 ·
√

2d NLMs.
I CRV Method [CRV14].

I (Heuristic) worst-case complexity: ≈ 2 ·
√

2d

d NLMs.

I Lower bound: ≈
√

2d

d NLMs.

[K62] D.E. Knuth. Evaluation of polynomials by computer. CACM 1962.
[E64] J. Eve. The Evaluation of Polynomials. Numerische Mathematik 1964.
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Non-linear Complexity of S-boxes: State-of-the-Art

(d , r) (4,4) (5,5) (6,4) (6,6) (7,7) (8,8)
Cyclotomic-Class method
[CGPQR12]

3 5 11 11 17 33

Parity-Split method
[CGPQR12]

4 6 10 10 14 22

CRV method [CRV14] 2 4 4 5 7 10

Lower bounds (over F2d )
[RV13, This Work]

2 2 3 3 3 3

Table: Worst-case complexity in terms of NLMs of previous methods.
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Our Contribution
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Improved CRV Method
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CRV Method: Recall

Input: d-to-r -bit S-box S

Output: A sequence of polynomials that eventually evaluates S.

Step 0: Naturally encode {0,1}d and {0,1}r in F2d .

Step 1: Pre-compute a set of monomials xL =
{

x i | i ∈ L
}

I Closed w.r.t. squaring.
I xL · xL must include all monomials in F2d [x ]/(x2d − x).
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CRV Method: Recall

Step 2: Find decomposition of the form

PS(x) =
t−1∑
i=1

pi(x) · qi(x) + pt(x) (mod X 2d − X ),

where pi(x),qi(x) ∈ T (xL). By

I Choosing random polynomials qi(x)
$← T (xL).

I Set up an F2-linear system of equations
I By evaluating the above relation at each input.
I Obtaining one equation for each output bit of S.
I Note that d − r output bits of PS(x) are discarded.

I Solve for the unknown bits of the coefficients of pi(x).
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Our Method

Very similar to the CRV method.
I Mainly Step 0 and Step 1 are modified.

Step 0: Naturally encode {0,1}d and {0,1}r in F2n .
I Need d , r ≤ n.

Step 1: Pre-compute a set of monomials xL =
{

x i | i ∈ L
}

I Closed w.r.t. squaring.
I Heuristic: xL · xL must yield a decomposition in the Step 2

below.
I This condition leads to a lower bound on |L|.

Step 2: Same as in the CRV method but now working over F2n .
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Our Method: Analysis

Total number of NLMs Md ,r ,n ≈ |L|/n + t − 1.
I Bigger field means longer cyclotomic classes.

As in the CRV method, to choose parameters L and t , we use
I Heuristic: we get full ranked matrix in Step 2 if |L| · t · n ≥ r · 2d .

We heuristically show that

Md ,r ,n ≈
√

2d

d
+

r ·
√

d · 2d

n2 .

Hence Md ,r ,∞ ≈
√

2d

d .

I Note: CRV method needs ≈ 2 ·
√

2d

d NLMs.
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Non-linear Complexity of S-boxes: Comparison

(d , r) (4,4) (5,5) (6,4) (6,6) (7,7) (8,8)
Cyclotomic-Class method
[CGPQR12]

3 5 11 11 17 33

Parity-Split method
[CGPQR12]

4 6 10 10 14 22

CRV method [CRV14] 2 4 4 5 7 10
Our method (over F28 ) 2 3 3 4 6 10
Our method (over F216 ) 2 3 3 3 4 6

Lower bounds (over F2n )
[RV13, This Work]

2 2 3 3 3 3

Table: Comparison of worst-case complexity in terms of NLMs.
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Masked Implementation of DES

DES uses eight 6-to-4-bit S-boxes.

Pre-compute xL = xC8
0 ∪ xC8

1 ∪ xC8
3 ∪ xC8

7 ∈ F28 [x ]/(x28 − x).

Obtain the decomposition: P(x) = p1(x) · q1(x)+ p2 (mod X 28 −X )

I p1(x),q1(x),p2(x) ∈ T (xL).

We performed a proof-of-concept software implementation of
masked DES in C.

I Used code from https://github.com/coron/htable/.
I Ran experiments on a DELL Laptop but manipulated only bytes.
I Tabulated linear functions in ROM for efficiency.
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Masked Implementation of DES: Comparison

Method t v + 1 Rand ×103 RAM (bytes) Time (ms) OF
Unprotected 0.005 1
CGPQR+RV 1 3 2752 72 0.290 58
CGPQR+CRV 1 3 1600 40 0.093 18
CGPQR+This Work 1 3 1216 34 0.068 13
CGPQR+RV 2 5 9152 118 0.538 107
CGPQR+CRV 2 5 5312 64 0.175 35
CGPQR+This Work 2 5 4032 54 0.133 26
CGPQR+RV 3 7 19200 164 0.824 164
CGPQR+CRV 3 7 11136 88 0.293 58
CGPQR+This Work 3 7 8448 74 0.214 42
CGPQR+RV 4 9 32896 210 1.188 237
CGPQR+CRV 4 9 19072 112 0.455 91
CGPQR+This Work 4 9 14464 94 0.323 64
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Further Improvement Using Bigger Fields
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Improved Upper Bounds

Worst-case upper bound on the non-linear complexity of d-to-r -bit
S-boxes.

I Even after our improvement to the CRV method, the upper

bound is still O
(√

2d

d

)
NLMs.

I Using a different technique, we “improve” the upper bound to
dlog2de NLMs. This bound is optimal.

Main idea is
I We can pack several independent multiplications over a smaller

field in a multiplication over a suitable extension field.
I Then individual products can be "extracted" for free using linear

projections.

We argument based on algebraic degrees to prove optimality of U.B.
Srinivas Vivek
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Improved Upper Bounds: AES case

Applying the preceding technique to the case of AES S-box
I We can evaluate (x254 ∈ F28 [x ]) using only 3 NLMs over F216 [x ].
I Previously it needed 4 NLMs over F28 [x ].

Method
I Identify F28 with a subfield of F216 .
I Compute x3.
I Compute (x2 + z · x3) · (x3)4, where z ∈ F216 \ F28 .
I F2-linearly extract the functions X 7→ X 14 and X 7→ X 15 over

F28 .
I Finally, compute x254 = x14 · (x15)16.
I The above sequence of operations is motivated by [GHS12].

[GHS12] C. Gentry, S. Halevi, N.P. Smart. Homomorphic evaluation of the AES circuit. CRYPTO 2012 & ePrint 2012/99.
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Non-Linear Complexity: Generalised Lower Bounds
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Generalised Lower Bounds

Worst-case lower bound on the non-linear complexity of d-to-r -bit
S-boxes.

I Previous best bound [CRV14]:
√

2d

d − 2 NLMs.
I But this bound holds only for d = r and over F2d .

We generalise the [CRV14] bound to any chosen field F2n .

I New lower bound:
√

r(2d−1−d)+(d+ r−n
2 )2−(d+ r−n

2 )

n NLMs.

I As in [CRV14], we use counting-based arguments.
I Additionally, we use the fact that projections are linear functions.
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Conclusion
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Conclusion

We improve the [CRV14] method for evaluating S-box polynomials.

I Main idea is to work over fields bigger than F2d for a d-to-r -bit S-box.

I Reduced the non-linear complexity for many S-boxes.

I DES S-boxes now need only 3 NLMs over F28 .
I Improvement in the running time of masked DES by around 25%.

“Improved” upper bound on the complexity of d-to-r -bit S-boxes

I New: dlog2de NLMs. Previous: O
(√

2d

d

)
NLMs.

I Comes at the cost of working in arbitrarily large fields.

I AES S-boxes now need only 3 NLMs over F216 .

Generalised previous lower bound results to arbitrary binary finite fields.
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Any Questions?
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